How Many Linux Systems Can Dance on a Single S/390?

David Boyes
VM/VSE Tech Conference
Jacksonville, FL

Agenda
- Overview of ISP/IDC Environment
- Construction of the Test Case
- Process of Testing
- What We Learned
- So What’s the Point Anyway?
- Areas for Further Research
Questions

- Please hold questions until the end -- I’ve got lots to talk about, and I want to make sure we get through all of it.

Overview of ISP/IDC Requirements

- Internet Service Providers (ISP)s and Internet-oriented Data Centers (IDCs) have similar requirements:
 - standard open-source applications (sendmail, bind, UCB POP3, UW IMAP, WUFTPD, INN, etc)
 - primarily Unix-based environment
 - IP-centric (some Novell, some NETBIOS)
Overview of ISP/IDC Requirements

- Primary differentiator is scalability and TCO:
 - IDC requires substantially larger scalability (avg 5000+ systems for industrial scale)
 - Target TCO computation for traditional solution: $1500/sq ft/month
 - total operational cost, including staff, environmental, operation and management software, etc.

Network Cost of Ownership

- $2,600 for Network Infrastructure per user, per year in an Enterprise Network
- 41% Facilities
- 23% Capital Equipment
- 36% Support Staff
- 4% Day-to-Day Operations and Support Staff

Source: The Registry
Overview of ISP/IDC Requirements

- Secondary differentiator is time to market (TTM):
 - avg for discrete machines = 7 days from payment to delivery
 - high-volume sources (Exodus, AboveNet) avg 4-5 days to delivery
- Most business ISP/IDC customers expect dedicated servers to guarantee SLAs.

Horizontal Vs Vertical Scaling

- Horizontal:
 - well suited to distributed apps and client/server
 - use of load balancing hardware hides complexity
Horizontal Vs Vertical Scaling

- **Vertical:**
 - Well suited to interactive user sessions and applications
 - Complex to integrate due to conflicting application requirements

“Well, this is a pretty mess you’ve gotten us into…”

- Customer looking at requirements for infrastructure buildout for managed router services:
 - 250 initial customers
 - DNS and Usenet News/INN only for first service offering (later offerings based on success of managed router service)
System Count: Discrete Solution

- estimating 2 Sun UE2 class systems for DNS; 1 Sun UE1000 system for INN due to I/O requirements.
 - System requirement replicated for each customer.
 - Implies 2 RU per UE2; 4 RU per UE1000 + disk array (2-4 RU)

- 3 systems per customer: 750 machines!

Support Infrastructure: Discrete Solution

- 3 physical LAN ports
- 1/3 of a rack
- VLAN configuration
- cabling and cabling management

- IP address allocation & routing policy
- Tivoli management agent license
- Tivoli TSM backup client license
- etc, etc, etc
The Approach

- Customer unwilling to commit without proof of concept.
- Customer uncomfortable with “bucking the trend” and concerned about perception of S/390 vs traditional solution.

Solution: do a study and push the technology hard to determine feasibility!

Objects of Study

- Scalability of Linux on System/390
- Compatibility and Applications Support
- Suitability of Linux on System/390 for ISP/IDC server platform
- Just plain curiosity
Architecture of Study

- Must resemble a “real” application prevalent in an ISP/IDC/ASP environment.
- Must show:
 - traditional ISP applications (DNS, News, NFS, WWW server)
 - integration of system management and connectivity management
 - viability of virtual server and risk.

Test Plan Able/Baker

- Small scale tests (250, 2750, 10000 images)
- Relied on test scripting and easy source portability.
- Determined that all-out testing was required.
Test Plan: Charlie

Virtual "Router" Network Systems
L/390 images:
1 virtual router system per
200 interfaces

Data Cache Systems
L/390 images:
1 data server image per
1000 client systems

WWW Server Instances
L/390 images:
38,000 images
(Goal: 99,999 images)

Configuration Instance
[shared /usr and /bin]

Test Driver Systems
L/390 images:
1500+ images

TCP over IUCV

NFS over TCP
over IUCV

HTTP over TCP
over IUCV

R/O mini-
disk link

R/O mini-
disk link

R/O mini-
disk link

R/O mini-
disk link

Lesson Learned

- Substantial operational advantages accrue from SCIF common console and VM system resource instrumentation and management.
 - Increased security and system resource monitoring
 - I/O modeling information
Lessons Learned

- Default Linux idle task management concept is not well-suited for hypervisor environments.
 - Default 100 hz timer pops consume substantial resources for no benefit if system is idle.
 - Must be adjusted proportionately -- other important timing functions are derived from this value.

- Linux for S/390 reacts proportionally to resource constraints.
 - SLA management can be reported and managed via VM resource controls for single-application Linux instances.
 - Further experimentation seems to indicate that limiting Linux paging by using large virtual machines is advantageous for large farms (allows VM to make more intelligent resource mgmt decisions)
Lessons Learned

- VM is critical to large scale Linux for System/390 scalability.
 - 15 LPARs and/or limited management in VIF do not offer sufficient cost/benefit to make the case for Linux on S/390 iron.
 - Loss of VM resource management and error recovery substantially complicates system management.

Lessons Learned

- Applications are directly source-compatible between Intel-based Linux and S/390-based Linux where supporting devices exist.
 - Compute-intensive apps work, but may not be optimum for S/390 unless interacting with other S/390 resources (eg, DB/2, etc).
 - Use of IEEE HW FP is significant (20-30% faster than emulation code depending on problem and instruction mix)
Lessons Learned

- A measure of high availability is inherited from the S/390 HW.
- Software HA is still somewhat limited and requires significant planning:
 - multiple network stacks
 - dynamic routing
 - service failover during CPU PM

Customer Outcome

- Customer is now creating between 15 and 30 virtual systems per day on a new 9672.
- Clients of the service are pleased with the uptime and low cost.
- Virtual system deployment completely automated (integrated into WWW front-end and back-end business systems).
Why?

- TCO for traditional solution: $1500/sq foot/month.
- Averages:
 - 3500-7000 discrete systems
 - 15,000-20,000 square feet
 - 3500-7000 network cables and LAN ports at $150/port
 - 3500-7000 power cables
 - Time to market: 4-7 days

Why Not!

- 1 to 41,000+ systems: 400 square ft (G5+Shark/EMC cabinet + misc routers)
- Time to Market: about 90 seconds per virtual machine created
- 2 high-capacity network cable (DS3/OC3/OC12 plus ESCON cabling to Cisco 7xxx+CIPs)
- 2 power cable per cabinet.
 Simplicity!
Where to Go?

- Test Plan Omega: 100,000 images.
- Multi-physical box clustering
- Global clusters
- Non-S/390 Virtual Machines
- Power Consolidation

Test Plan Omega

- Push a single S/390 system to the limit: 100,000 systems
 - Successfully deployed 97,943 images on a dedicated 9672-ZZ7 with VM
Multi-CPU Clusters

- Use CSE or ISFC to build linked physical clusters (TSAF limits size of cluster to 8).
- Separate applications from network processing/allow PM of individual CPUs w/o interrupting service to entire complex.
- See earlier notes wrt to high-availability planning -- critical to this effort.
- WORKS TODAY WITH VM!

Global CPU Clusters

- Link physical systems over long distances
- Value: global companies, large WWW hosting facilities with replication between centers.
- Tested between Virginia and CEDEC, France (network in US, apps in Europe)
Non-S/390 Virtual Machines

- Why should VM emulate only the S/390 architecture?
- Can be done acceptably today with Linux for S/390 for almost any popular micro architecture:
 - Intel 486/Pentium (good enough to run NT Server!)
 - Macintosh
 - Apple II
 - Commodore 64 (I’m NOT kidding!)

Non-S/390 Virtual Machines

- Hand optimization of code will address speed concerns
 - Recoding portions of bochs in 390 BAL dramatically increased speed:
 - Original code: P70-class
 - Assembler version: P200-class
 - Rapid deployment of NT images is straightforward for fixed offerings
Power Consolidation

- Interesting development is interest in server consolidation due to recent power problems in California and other locations.

Power Comparison

- **Discrete Servers (1000 Systems)**
 - 18 KW CPU (Sun UE2)
 - 5 KW (Cisco Routers)
 - 3.54KW (Cisco LAN switches)
 - Etc...
 - 24.5 KW *before* adding disk
 - Consumption increases as number of systems increases.

- **G6-based Farm (1000 images)**
 - 6.1KW CPU
 - 5 KW (Cisco Routers)
 - 6.1KW (DASD)
 - 21 KW *with* disk
 - Consumption fixed from 1 to thousands.
Questions?

- Tell the commercial vendors you want to see Linux for System/390 applications!
- IBM is committed to Linux on the 390 and zSeries.
- Don’t forget to tell your IBM rep you think VM is critical to the success of Linux on the S/390!

Contact Info

Linux-related stuff:

dboyes@sinenomine.net
+1 703 783 0438
VM & Linux:
Let’s Rock Some Worlds!

Presentation Foils
www.sinenomine.net/downloads/vmvse